

SAFE WORK PRACTICE

May, 2017

PURPOSE/APPLICATION

To provide guidance for working around iron sulphide. Iron sulphide is a pyrophoric material. This means that it can spontaneously ignite when exposed to air. Iron sulphide is created when rust is present in an oxygen-free environment where hydrogen sulphide gas is present, or where the concentration of hydrogen sulphide (H2S) exceeds that of oxygen.

When iron sulphide is subsequently exposed to air, it is oxidized back to iron oxide forming either sulfur or sulfur dioxide gas. This chemical reaction between iron sulphide and oxygen generates a considerable amount of heat. In fact, so much heat is released that individual particles of iron sulphide become incandescent and glow. This heat can ignite any nearby flammable materials.

Pyrophoric iron fires most commonly occur during shutdowns when equipment and piping are opened for inspection or maintenance. Spontaneous ignition of iron sulphide most commonly occurs with materials stored on the ground or while inside refinery equipment.

<u>PPE</u>	 Strike minimum requirements 	 Respiratory pr (As required) 	Respiratory protective equipment (As required)	
	Gas monitors			
<u>TRAINING</u>	 WHMIS 	 H₂S Alive 		
	Fit testing			
HAZARDS Sources & CONCERNS	 Personal injury 	 Fires/Explosion 	ns	
	 H₂S 	 NORM's 		
	Chemical Exposi	ure		
Flarmable/ Explosive	Toxic/ Carcinogenic	Temperature	Chemical	

Example of dry filters sponesously combusting

SAFE WORK PRACTICE

May, 2017

Common location of Iron Sulphide:

- Crude oil tanks
- Asphalt tanks
- Sour water tanks
- Vessels in sour service such as coke drums, distillation columns, inlet separators, pig receiver/senders
- Reactors
- Separators
- Marine tankers and barges
- Portable tanks and tote bins

Examples of Iron Sulphide found on filters, process equipment:

SAFE WORK PRACTICE

Avoiding or Controlling Iron Sulphides

- **Communication between Strike and Client/Owner** regarding iron sulphide hazards, and the mitigation strategy prior to starting work
- Replace components that contain sulfur compounds
- The most effective method to control iron sulphide is chemical neutralization. Before opening the equipment potassium permanganate solution (typically around a 1% solution), is circulated through the equipment
- Prevent the sulphide from contacting air. This can be achieved by maintaining a continuous layer of liquid, steam or inert gas between the material and the air. Inerting or flooding vessels with nitrogen gas is one such method
- Keeping the deposits and scale wet until it can be safely removed to a remote area and allowed to dry
- Maintain a constant air ventilation to ensure there is plenty of oxygen to allow the reaction to go to completion, preventing the formation of the pyrophoric intermediates
- Quickly move scale and potential pyrophoric deposits to a remote area and monitor in case ignition does occur

Developed by:	Rhys Cooper	Frank Jensen		
	Brian McConnell		Date:	May 1, 2017
Reviewed by:			-	
Approved by:	HSE Committee		Date:	May 25, 2017
			-	